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SUMMARY 

The boundary integral equation method is a numerical technique extensively applied in the solution of 
boundary value problems from many different engineering fields. The starting point of the method is 
the formulation of an integral equation which gives the variable at any point in terms of single and 
double layer potentials whose densities are the values of the variable and its derivatives on the 
boundary. The method consists of the numerical solution of this integral equation when the field point 
is taken to lie on the boundary. The present paper extends the formulation of the method to Stokes 
flows of a collection of particles in infinite circular cylinders. This is achieved by developing matrix 
Green's functions for Stokes flows in cylindrical boundaries. The results are found to be in good 
agreement with the results of Wang and Skalak' and T o ~ e r e n . ~  

KEY WORDS Boundary Method Green's Function Stokes Flow Cylindrical Tubes Collections of Particles 

1. INTRODUCTION 

The slow viscous flow past a collection of particles is of interest in many engineering fields 
and has received considerable study.3 For particles of some special shapes, analytic solutions 
have been derived by applying separation of variables to Stokes equations. Some examples 
are the series solution in spherical co-ordinates as given by Lamb4 and series in bi-spherical 
co-ordinates used by Stimson and Jefferys and Tozeren and Skalak6 in the interactions of two 
spheres. 

The two most extensively used numerical techniques are (i) boundary solution procedures 
based on solutions of Stokes equations satisfying boundary conditions only approximately 
and (ii) the method of reflections, an iterative procedure. In the study of multiparticle 
configurations, boundary methods have very successful  application^.^ The method of reflec- 
tions, until recently the most popular technique, is very slowly convergent when the particle 
spacing and the distance from particles to boundaries are comparable to the dimensions of 
the particles. 

As opposed to the techniques mentioned above, finite elements and finite differences are 
applicable for particles of arbitrary shapes. Many boundary value problems in infinite 
domains are solved using these techniques in conjunction with boundary solution procedures. 
Zienkiewicz, Kelly and Bettess' discuss some applications in flow in porous media, heat 
conduction and wave propagation in which the finite elements are introduced in some 
bounded (interior) region and boundary solution procedures are applied in the unbounded 
(exterior) region. The additional parameters of the boundary solution procedures are 
eliminated by using the continuity conditions at the common boundary. (These applications 
show that the finite element and finite difference formulations can be generalized to 
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unbounded Stokes flow problems readily in contrast to the remarks by Leichtberg et ul.’ and 
Youngren and Acrivos.’) 

Another numerical technique recently applied to Stokes flow problems is the boundary 
integral equation Using this method, Youngren and Acrivos’ studied the Stokes 
flow past particles of a variety of different shapes. The starting point of their work is the 
formulation of an integral equation (the Green’s formula for Stokes equations) which gives 
velocities at any point in terms of velocities and stresses on the particle surface. The method 
consists of the numerical solution of this integral equation when the field point is taken to lie 
on the boundary. 

This paper presents a formulation of the boundary integral equation method for axisym- 
metric slow viscous flow past a collection of particles in a circular cylindrical tube. The 
boundary integral equation corresponding to the Stokes problem is given in Section 2. This 
formula involves integrals taken along the surface of particles and the circular cylindrical 
surface. However, the integrals along the infinite cylindrical surface vanish if the matrix 
Green’s function is used in place of Stokeslet solutions in the boundary integral equation. 
Liron and Shahar” give the Green’s functions for the general three dimensional case. A 
similar approach valid for axisymmetric configurations is outlined in Section 3. Extensive 
numerical tests are performed and the results on flow of spherical or spheroidal particles and 
a pair of spherical particles are compared with the results of previous work in Section 4. 

2. BOUNDARY INTEGRAL EQUATION 

Consider the Poiseuille flow past a particle of arbitrary shape in an infinite circular cylinder 
(Figure 1). The equations governing the motion are the Stokes equations and equation of 
continuity: 

where p is the viscosity of the fluid and p is pressure. The disturbance velocity v is subject to 
the following boundary conditions: 

pV2v=gradp,  divv=O (1) 

v(x)=O, x€ST, v-0 as z - + F ~ .  

I 

Figure 1. Axisymmetric slow viscous flow past particles of arbitrary shape in an infinite circular cylinder 
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where U and V/2 are the particle and average velocities; S,, S, are the particle surface and 
the surface of the tube respectively; and k is the unit vector in the z direction. 

A solution of (1) in terms of potentials of single and double layers is given by Ladyzhens- 
kayaI3 (see also Reference 9): 

vk(x)= Js T ~ ~ ( u ~ ( x ,  y ) ) , ~ ?  dS- u:(x, y)aij(v)ni dS 
JS 

(3) 

where aij(v) is the stress tensor for velocities q, u; is the fundamental singular solution of 
Stokes equations (a Stokeslet) and Tij(uk(x, y), is the stress tensor given by equations (3.5) 
and (3.11) of Reference 13. 

and 

where x is an arbitrary field point, y is the point of application of Stokeslet, 8; is the 
Kronecker delta and Ix-yI is the distance between the points x and y. 

The singular surface integrals in (3) along the infinite cylindrical surface can be eliminated 
by using the matrix Green’s functions G!, gk in place of the Stokeslet solution. The GF and 
gk are defined by the solution of the following equations: 

a 
F V:Gf(x, Y > = -  g k b ,  Y )  

% 
a 
- Gr = 0 everywhere except x = y 
8% 

and 
GT = 0 at S ,  for i, j ,  k = 1,2 ,3 .  

Equation (3) written for u! = G; and the surface S = S,+ ST+ S, + S ,  is (where Su and S, 
are upstream and downstream faces as shown in Figure 1) 

The integrals along ST, S ,  and SD vanish since Gi = vj = 0 for x E S, and Gj, vi +- 0 as 
z + r w .  

It is possible to simplify the equation (6) even further by applying Green’s formula 
(equation 2.5 in Reference 9 and equation 3.10 of Reference 13) to  the flow 

v = u = k  U - V  1-- , U ~ ~ ( V ) = T ~ ~ ( U )  [ ( :31 
in the region bounded by the particle surface (where T~~ are stresses due to Poiseuille flow): 

r 

T:j(Gk)u,ni dS- (7) 
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Subtraction of (7) from (6)  and use of ui = vi at y E S,  lead to an expression for vk(x) in terms 
of single layer potentials alone: 

I- 

s ( ~ > =  - GI(x,  y)(aij(v)-Tij(u))nj d s  
JS, 

The density fi = (uij(v) - Tij(u))nj of the kernel G: is the difference of traction components of 
the actual flow and Poiseuille flow at S,. 

For axisymmetric flows the dimension of the problem is reduced: 

where ds is infinitesimal arclength and C, is the generating arc of the surface S,. The G‘ and 
G‘ are Green’s functions which correspond to the singular solutions for the force fields 
l/r’2 6(r - r’) G(cos 13 -cos 8’)e‘ and l /r’* G(r- r‘) G(cos I3 -cos 13’)ez (distribution of Stokeslets 
in r and z directions on the rings around the symmetry axis, r = r’ and I3 = 0’). 

Knowing the velocities v, and v, on the surface, equation (9) can be solved for the density 
fi by transforming this integral equation into a system of algebraic equations.’ This is 
achieved by dividing C, into a number of elements, introducing unknown tractions at each 
node, assuming fi varies linearly within each element and carrying out the integrals in (9) of 
the terms multiplied by the nodal values of fi numerically. 

In the next section, the matrix Green’s function for axisymmetric Stokes problems in an 
infinite circular cylinder is developed by using the Fourier transform technique. 

3 .  GREEN’S FUNCTION 

In order to handle Stokes problems in infinite circular cylinders by the boundary integral 
equation method it is necessary to determine Green’s function for cylindrical boundaries. 
This is obtained by Liron and Shahar’ for the general three dimensional flow. In this section, 
using Fourier transforms, the Green’s function Gj is developed in the particular case of 
axisymmetric flow. 

Figure 2. The velocity iiz at position p = (~ (x ) ,  z )  due to a ring-like distribution of Stokeslets in the axial direction at 
(r(y), 0)  
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1 
Figure 3 .  The velocity I’ due to a ring of Stokeslets in the radial direction 

The axisymmetric Green’s function has the same type of singularity as the velocity field 
due to a ring of Stokeslets iii (such rings of Stokeslets in the z and r directions are illustrated 
in Figures 2 and 3) .  The iij given below are obtained by integration of certain ui components 
with respect to the azimuthal angle 4:  

ii’= _- Z k r ( x ) - ” “ r ( y ) - ” ’ ~ ( k )  + ( r ( x ) ” -  r ( y ) ’ -  z’) 

ii; = - 1 k ~ r ( y ) - ~ ’ ” r ( x ) - ’ R ( K ( k )  - ( r ( ~ ) ~ -  r(y)’+ 2”) 

8 7 ~ p  

8Tl.L 

6;  = _- 1 k r ( ~ ) - ~ ’ ” ( y ) - ~ ’ ’ {  (r(x)” + r(y)” + 2z2)K(k )  
8wJ 

, r:, = 1x- yI and K ( k )  and E ( k )  are complete elliptic inte- 2 4 r ( x ) r ( y ) I  
4z‘ + ( r ( x )  + r ( ~  >>”I where k = 

grals of first and second kinds. 
Although they have the same singular behaviour as Gj the velocities i i j  violate the no-slip 

boundary condition on ST. Finding a regular solution of Stokes equations which has equal 
but opposite boundary values at S, and superposing with this solution yields the 
axisymmetric Green’s function. 

The general axisymmetric solution of Stokes equations in cylindrical co-ordinates is 

0, = $[tIo(rt)A(t)+(rtI,(rt)+21,,(rt))B(t)] cos z t  dt 

u, = [ [ t I , ( r t ) A ( t )  + r t Io ( r t )B( t ) ]  sin z t  dl 
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for v, = even, v, =odd with respect to z, and 

CD 

v, = [tI,A(t)+(rtIl+21,)B(t)]sin zt dt 

v,= -b  [tI,A(t)+rtl,B(t)]coszt dt 
m 

for v, = odd and v, = even, where I, and I, are modified Bessel functions of zero and first 
orders. The functions A(t) and B( t )  must be so chosen that the regular solution (v,, v,) 
satisfies the boundary condition ui = -a; at the tube surface, r ( x )  = r,. This is possible if the 
expressions within the square brackets in (11) and (12) are equal to the Fourier transforms of 
-iii at r = r,,. The iif for fixed r ( x )  = ro can be written as inverse Fourier transforms (cosine 
transform for even functions, sine for odd) by using equations (7.3.38H7.3.41) of Reference 
3: 

(13) 
6 iii(r,,, z ;  r ( y ) ,  0) = g i ( t )  cos zt dt 

= [ g j ( t )  sin zt dt  

where 
1 

g: = -- [2Ko(rot)l,(rt) - rotK,(rot)Io(r t )  + rtK,,(r,t)l~(rt)] 
2TP 

1 
S: = -- [rotKi(rot)Ii(fl) - rtKo(rot>Mfl>I 

2TP 

1 
2 w  

g: = -- [2K,(r,t)I,(rt) + rotKo(rot)I1(rt) - rtK,(r,t)I,(rt)] 

and 

r = r ( y )  and r ( x ) = r , .  

The conditions v j  = -iii at r = r,  can be written as 
(i) for ring-like distribution of Stokeslets in the z direction 

tI ,(r, t)A(t)+(r, tI ,(r, t)+2I,(r, t))B(t)  = -g: 

t I , ( r , t )A( t )  + ro t I ( ro t )B( t )  = -g: 

(ii) for a ring of Stokeslets in the r direction 

tr ,(r, t)A(t)+(r, t l l(r , t)+21,(r, t))B(t)  = -g: 
-tl,(r,t)A(t) - rotIo(rot)B(t)  = - g : ( t )  

Solving for the functions A(t) and B( t )  from these equations; substituting into equations 
(11) and (12) and carrying out the integrals in t gives the regular solutions vi as functions of 
r ( x ) ,  r ( y )  and t. Finally, the superposition of vj with - 6; yield the Green’s functions Gj. 
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4. NUMERICAL RESULTS 

For numerical solution of the boundary integral equation (9) the curve C, is subdivided into 
a number of elements and an unknown traction vector (f:, fi) is introduced associated with 
each node. The components of traction f, and fi are assumed to vary linearly within each 
element (see Reference 14 for linear and higher order elements in boundary element 
techniques) : 

fi ( X I  = f"x) + f W 2 b )  (17) 

where N,(x)  and N2(x) are linear shape functions. Using (17), equation (9) is replaced by the 
approximate boundary integral equation 

ne 

v,(x>= - c (f:J G:(x, y)N1(y)ds+f:C1 
n = l  C,. 

where n, is the total number of elements and C,, is the element n. Substitution of known 
values of v at (n,+ 1) different points and computing the integrals within each element 
transform the integral equation into a set of linear equations for the unknowns, nodal 
traction components. 

The axisymmetric fundamental solution (10) is not valid for the nodes on the symmetry 
axis, r(y) = 0. However, taking limits of these expressions as r(y) -+ 0 we obtain well defined 
velocity components for any point r ( x )  # r(y), z # 0 using the limiting behaviours of k,  K, E 

(1 +$k2)  and E -? (1-$k2) as r(y) -+ 0). These simplified expressions (k - ~(y)''', K -- 
2 

can then be used in equation (18) for the nodes on the symmetry axis in place of 
fundamental solution (10). It is found easier to carry out this limiting procedure numerically 

f l  

2 

Table I. Velocities at z = 0.0, r = 1.0 due to rings of Stokeslets (r', 2'). Comparison of 
exact values with Fourier transforms numerically integrated using different N = number of 

steps and T = integration limit 

Location of Velocities 
Stokeslet N T  0: v: 4 v: 

Exact 0.251878 0.001207 0.024805 0.011986 
r ' = 0 . 1  600 50.0 0.251882 0.001207 0.024805 0.011986 
z '=O-l  400 50.0 0.251885 0.001207 0.024806 0.011986 

200 50.0 0.251938 0.001207 0.024808 0.011987 
200 25.0 0.251891 0.001207 0.024809 0.011987 

Exact 0.27134 0.006796 0.081277 0.016556 
r' = 0.3 600 50.0 0.27135 0.006796 0.081287 0.016556 
Z' = 0.4 400 50-0 0.27135 0.006796 0.081280 0.016557 

200 25.0 0.27136 0.006795 0.081282 0.016558 

Exact 0.27088 0.016158 0.073243 0.011372 
r' = 0.6 600 50.0 0.27085 0.016138 0.07327 0.011317 
2' = 0.9 400 50.0 0.27090 0.016165 0.073245 0.011385 

200 25.0 0.27090 0-016163 0.073256 0-011369 
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Table 11. The coefficients of additional drag Au and Av computed using 
different values of T and N (total number of elements, n, = 10 and order 

of Gaussian quadrature, m = 5 for all cases) 

a/ro = 0.5 a/ro = 0.7 
N T AU Av 

600 50 5.9414 4.9860 24.265 17.137 
400 50 5-9414 4.9860 24-268 17.139 
200 50 5.9439 4.9881 24-380 17.217 
200 25 5.9416 4.9861 24.253 17.128 

by testing the convergence of relevant integrands in (18) taking r(y) = . . . 
Three iterations at most was sufficient to obtain six significant figures. 

Various tests are performed to determine the accuracy of this procedure compared to 
other numerical methods. In all these tests, the element lengths are chosen to be equal. The 
line integrals within each element (18) are calculated using Gaussian quadratures. If the 
point x is one of the nodes that belong to the element, K ( k )  behaves like log(x-yl, as 
/ x  - y (  -+ 0. The integral of the singular part is taken analytically, and quadrature is applied 
to the regular part. In addition to number of elements and order of Gaussian quadrature, a 
third factor which determines accuracy is the numerical integration scheme used in calculat- 
ing the Green's functions. Simpson's rule is found to yield satisfactory accuracy in these 
calculations. Tables I-V present the results of the numerical tests applied to determine how 
the accuracy is influenced by the parameters-number of integration points used in Simp- 
son's rule of integration, order of Gaussian quadrature and number of elements. Tables 
VI-IX compare the present procedure with the results of previous ~ o r k s . ' , * , ~ , ~ ~  

The Fourier inversion integrals in equation (13) are calculated for rings of Stokeslets with 
radius r ( y )  = 0.1,0.3,0.6 and z'= 0*1,0*4 and 0.9 for velocities at ro = 1 and z = 0. Impor- 
tant parameters of the Simpson's rule are N = number of integration points and T = upper 
limit of integration (replacing infinity in the Fourier integrals). Four different groups of 
values of these parameters are considered: (A) N = 200, I = 50, (B) N = 400, T = 50, (C) 
N= 600, T =  50 and (D) N =  200, T =  25. Results of different choices are tabulated in Table 
I. Comparison with exact results shows that the error in almost all cases is less than 0.005% 
when z is small and Jess than 0.01% when z is close to unity. Table I indicates that 
decreasing the size of the subdivisions from 0.25 to 0.125 substantially improves the results. 
However, taking T = 25 instead of 50 (a choice that will reduce the processing time by a 
factor of two) does not effect the accuracy so much. 

Table 111. AU and Av for several values of order of Gaussian 
quadrature m (T = 25-0, N = 200, n, = 10 for all cases) 

alr, = 0.5 alro = 0.7 
m A" Av XU AV 

1 5.8727 4-9678 22,630 16.359 
3 5.9400 4.9847 24.253 17.128 
4 5.9411 4.9857 24.267 17.138 
5 5.9416 4.9861 24.275 17.144 
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Table IV. For a fixed number of integration points (m X 
n,) using higher order Gaussian quadratures improves the 
accuracy of AU faster than increasing number of elements 

alro = 0-5 alro = 0.7 
n, m = l  m = 5  m = l  m = 5  

10 hU=5.873 5.942 22.63 24.28 
18 5.912 5-946 23.82 24.62 
28 5.921 5.947 24-06 24-66 
48 5.928 5.948 24.23 24.68 

Table V. Improvement of results by increasing n, = number 
of subdivisions for fixed values of the other parameters, 

N=100,T=25.0 m = 5  

n, 

10 
14 
18 
28 
38 
48 

a/ro = 0.5 a/ro = 0.7 
ACJ AV hu Av 

5.9439 4.9881 24.380 17.217 
5.9474 4.9935 24.649 17.433 
5.9486 4.9953 24.723 17.495 
5.9495 4.9967 24.773 17.538 
5.9497 4.997 1 24.786 17-549 
5.9498 4.9972 24.791 17.553 

Table VI. Comparison of present results (obtained by using N = 200, T = 25.0 m = 5 ,  
n, = 28) with the results of Leichtberg et al.,' Tozeren' and Wang et a1.l 

Leichtber et al. Present 
alb X u  Av Tozeren Wang et aE results 

0.1 1-263 1.255 1.263 1.255 1.263 1.255 1.263 1.255 
0.2 1.680 1.636 1.680 1.635 1.680 1.635 1.680 1.635 
0.3 2.373 2.231 2.371 2.229 2.370 2.229 2.370 2.229 
0.4 3.599 3.223 3.593 3.216 3.592 3.216 3.591 3.216 
0.5 5.973 5.017 5.952 4.999 5.949 4.996 5.947 4.995 
0.6 11.20 8.696 11.11 8.627 11.10 8.617 11.09 8.611 
0.7 25.29 17.91 24.77 17.54 24.70 17-49 24.66 17.45 

Table VII. Comparison of various spheroidal particle solutions (Chen and Skalak's'" 
solutions are for particle spacing of three particle diameters), where 6 is the ratio of the 

axial to radial thickness of the spheroid 

6 Chen and Skalak16 Wakiya15 Present results 

1.414 2.762 2.597 2.717 2554 2.779 2.613 
0.943 2.298 2.163 2.302 2-164 2.317 2.179 
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Table VIII. AU and hv for a pair of spheres, a/r, = 0.3 and particle spacing 2pa 
~~ ~ 

P 1.001 1.005 1.01 2 3 4 5 

hU 1.948 1.950 1.953 2.306 2.367 2.370 2.370 
hv 1.823 1.825 1.828 2.166 2.266 2.229 2.229 

The alternative to numerical integration for Green's function is contour integration and 
residue calculation in the complex plane, Although its formulation is simple and straightfor- 
ward no program of comparable efficiency to numerical integration could be developed 
because of the following difficulties: (1) neither the series nor the asymptotic formulae are 
suitable for computing Bessel functions in some intermediate range of the complex variable, 
and (2) the number of residues to be calculated for satisfactory accuracy increases rapidly for 
small values of x3(= 2 ) .  

Further information on different choices of T and N is presented in Table 11. The variables 
tabulated for various T and N are drag coefficients A,=drag/(6n~uU) and A v =  
d rag / (6 r~uV) .  The number of elements, n,, in all the cases, was equal to 10. The results are 
given for u/ro (ratio of particle diameter to tube diameter) = 0.5 and 0.7. The change in AU 
(or A,) from N=400 to 600 is approximately 40 times smaller than the change from 
N = 200 to 400. This shows that the results for N = 600 may be considered as converged at 
least up to five digits. Very good accuracy compared to converged results is obtained by 
N = 200 and T =  25 (four significant figures for u/ros0.5 and an error less than 0.05 per 
cent for u/ro = 0.7). 

The results presented in Table I11 show that A, changes little for order of Gaussian 
quadrature, rn, greater than 3 .  Significantly more accurate results (for N = 200, T = 50, n, = 
10) are obtained by increasing rn from 1 to 3. This conclusion is important because rn = 1 
actually corresponds to the assumption that traction is constant within each element. The 
improvement is, therefore, due to our use of higher order interpolation (linear) for tractions. 
Table IV compares A, for u/ro = 0.5 and different values of rn and n,. With m = 1, n, = 48 
(total number of integration points = 48) error is much greater than rn = 5 ,  n, = 10 (number 
of integration points=50). This is further evidence that type of interpolation used for 
traction strongly affects the accuracy. 

Another series of numerical experiments are carried out, as shown in Table V to study 
convergence of A, as a function of n,. In all cases T =  25, N = 100, rn = 5. For A = 0-5 
continuity of four figures and results accurate to 0.07 per cent for A = 0.7 are obtained at 
n, = 28. 

Table IX. Comparison of hU and hv for a pair of spheres given by 
Leichtberg et al.' with the present results (0 =particle spacing) 

~ ~ ~~ 

Leichtberg et aL7 Present results 
a/rO P AU A" P AU A" 

0.3 1.0 2.076 1.920 1.001 1.948 1.823 
2.0 2.320 2.117 2.0 2.306 2.166 

0.5 1.0 5-656 4.91 1 1.001 5.496 4.575 
2.0 5.968 4.988 2.0 5-937 4.983 

0.7 1.0 24-41 17.46 1.001 24-05 16.92 
2.0 25.28 17.50 2.0 24.60 17.40 
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Results of previous works on spherical  particle^^^'^^ are compared with the present results 
in Table VI. The values of the parameters were T = 25.0, N =  200, n, = 28, rn = 5. This 
choice yields convergence of four figures in h for a / r o s 0 . 5 .  A small error is introduced in A 
by using these values for a/ror0-5. The magnitude of this error can be accurately predicted 
by using Tables I-V. Table VI shows a good agreement between the results of Tozeren,' 
Wang and Skalak' and the present work, but a marked difference between Leichtberg et d7 
and the others. Especially, the disagreement between Leichtberg et aL7 and Tozeren2 is 
unexpected, because both use the same numerical procedure: the boundary method based on 
solutions of Stokes equations, series in spherical co-ordinates and integral transforms in 
cylindrical. Studying the interactions of an infinite chain of spheres, Wang and Skalak' use 
series in spherical and cylindrical co-cordinates. It is very unlikely that the three completely 
different approaches of Wang and Skalak,' Tozeren2 and the present work (based on the 
boundary integral equation method) are in error by almost the same amount. 

Table VII compares some spheroidal particle results. Chen and Skalak's16 solutions 
presented in this Table are for an infinite chain of spheroids with /3 =particle spacing =6a. 
Increasing the number of particles in the chain, and decreasing the spacing, reduces the 
coefficient of additional drag. This can be seen by comparing Chen and Skalak's16 solutions 
with present results for a single spheroid given in Table VII. Also given in this table are 
single spheroid solutions by Wakiya.15 The accuracy of his solutions is not satisfactory, 
especially in the case of prolate spheroids. 

In Table VIII the A" and Av for a pair of spheres with a/r, = 0.3 are given for several 
values of /3 = particle spacing. The number of elements, n, = 14 leads to converged results for 
airo = 0.3. This Table shows that the drag for touching spheres is substantially lower than for 
single spheres. However, for P>4a (and a/ro=0.3) particles in the chain have little 
influence on each other. 

Finally, Table IX compares the present results on a pair of spheres with the results of 
Leichtberg et d7 (see Table 4 of their work). According to their results, Av is very little 
affected by variations in particle spacing especially for larger values of a/ro. This is in 
contradiction with the results of Wang and Skalak' on an infinite chain of spheres. Moreover, 
the disagreement between present results and those of Leichtberg et aL7 (see Table VI) is 
more obvious in this case of a pair of spheres. Some error is introduced in our results by 
using only 14 elements for each sphere (see Table V). This error is less than 0.1 per cent for 
0 . 3 < a / r ~ 0 . 5  and 0.5 per cent for a/ro>0.5. But the discrepancies are larger than these 
figures, as can be seen from Table IX. 

CONCLUSIONS 

The applications presented above demonstrate that the boundary integral equation method 
used in the solution of Stokes problems in tubes is superior to boundary methods and the 
method of reflections because it is independent of particle shapes and to finite elements and 
finite differences because no formulation of these for arbitrary chains has been developed 
yet. Currently work is in progress studying flows of chains of particles shaped like white and 
red blood cells in capillaries using the formulation given in this paper. 
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